skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Döller, Sonja C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This review gives an overview of current trends in the investigation of confined molecules such as water, small and higher alcohols, carbonic acids, ethylene glycol, and non-ionic surfactants, such as polyethylene glycol or Triton-X, as guest molecules in neat and functionalized mesoporous silica materials employing solid-state NMR spectroscopy, supported by calorimetry and molecular dynamics simulations. The combination of steric interactions, hydrogen bonds, and hydrophobic and hydrophilic interactions results in a fascinating phase behavior in the confinement. Combining solid-state NMR and relaxometry, DNP hyperpolarization, molecular dynamics simulations, and general physicochemical techniques, it is possible to monitor these confined molecules and gain deep insights into this phase behavior and the underlying molecular arrangements. In many cases, the competition between hydrogen bonding and electrostatic interactions between polar and non-polar moieties of the guests and the host leads to the formation of ordered structures, despite the cramped surroundings inside the pores. 
    more » « less
  2. Two different mesoporous silica materials (SBA-15 and MCM 41) were impregnated with four different, commercially available surfactants, namely, E5, PEG 200, C10E6, and Triton X-100. Differential scanning calorimetry was employed to confirm the confinement of the surfactants in the pores of their host materials. Dynamic nuclear polarization enhanced solid state 13C magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra were recorded for these materials, showing that both the direct as well as the indirect polarization transfer pathways are active for the carbons of the polyethylene glycol moieties of the surfactants. The presence of the indirect polarization pathway implies the presence of molecular motion with correlation times faster than the inverse Larmor frequency of the observed signals. The intensities of the signals were determined, and an approach based on relative intensities was employed to ensure comparability throughout the samples. From these data, the interactions of the surfactants with the pore walls could be determined. Additionally, a model describing the surfactants’ arrangement in the pores was developed. It was concluded that all carbons of the hydrophilic surfactants, E5 and PEG 200, interact with the silica walls in a similar fashion, leading to similar polarization transfer pathway patterns for all observed signals. For the amphiphilic surfactants C10E6 and Triton X-100, the terminal hydroxyl group mediates the majority of the interactions with the pore walls and the polarizing agent. 
    more » « less
  3. Haro-Mares, N.; Brodrecht; Wissel, Till; Döller, S.; M. Rösler, L; Breitzke, H.; Hoffmann, M.M.; Gutmann, T.; Buntkowsky, G. (Ed.)
    The physicochemical effects of decorating pore walls of high surface area materials with functional groups are not sufficiently understood, despite the use of these materials in a multitude of applications such as catalysis, separations, or drug delivery. In this study, the influence of 3- amino-propyl triethoxysilane (APTES)-modified SBA-15 on the dynamics of deuterated ethylene glycol (EG-d4) is inspected by comparing three systems: EG-d4 in the bulk phase (sample 1), EG-d4 confined in SBA-15 (sample 2), and EG-d4 confined in SBA-15 modified with APTES (sample 3). The phase behavior (i.e., melting, crystallization, glass formation, etc.) of EG-d4 in these three systems is studied by differential scanning calorimetry. Through line shape analysis of the 2H solid-state NMR (2H ssNMR) spectra of the three systems recorded at different temperatures, two signal patterns, (i) a Lorentzian (liquid-like) and (ii) a Pake pattern (solid-like), are identified from which the distribution of activation energies for the dynamic processes is calculated employing a two-phase model. 
    more » « less